Stats 2 Chi-Squared Contingency Table Tests Questions

2 Year 12 students at Newstatus School choose to participate in one of four sports during the Spring term.

	Squash	Badminton	Archery	Hockey	Total
Male	5	16	30	19	70
Female	4	20	33	53	110
Total	9	36	63	72	180

The students' choices are summarised in the table.

- (a) Use a χ^2 test, at the 5% level of significance, to determine whether the choice of sport is independent of gender. (10 marks)
- (b) Interpret your result in part (a) as it relates to students choosing hockey. (2 marks)
- 4 It is claimed that the area within which a school is situated affects the age profile of the staff employed at that school. In order to investigate this claim, the age profiles of staff employed at two schools with similar academic achievements are compared.

Academia High School, situated in a rural community, employs 120 staff whilst Best Manor Grammar School, situated in an inner-city community, employs 80 staff.

The percentage of staff within each age group, for each school, is given in the table.

Age	Academia High School	Best Manor Grammar School
22–34	17.5	40.0
35–39	60.0	45.0
40–59	22.5	15.0

- (a) (i) Form the data into a contingency table suitable for analysis using a χ^2 distribution. (2 marks)
 - (ii) Use a χ^2 test, at the 1% level of significance, to determine whether there is an association between the age profile of the staff employed and the area within which the school is situated. (9 marks)
- (b) Interpret your result in part (a)(ii) as it relates to the 22–34 age group. (2 marks)

7 A statistics unit is required to determine whether or not there is an association between students' performances in mathematics at Key Stage 3 and at GCE.

		Α	В	С	Below C	Total
Key	8	60	55	47	43	205
Stage 3	7	55	32	31	26	144
Level	6	40	38	35	38	151
	Total	155	125	113	107	500

A survey of the results of 500 students showed the following information:

- (a) Use a χ^2 test at the 10% level of significance to determine whether there is an association between students' performances in mathematics at Key Stage 3 and at GCE. (9 marks)
- (b) Comment on the number of students who gained a grade A at GCE having gained a level 7 at Key Stage 3. (1 mark)
- 1 Two groups of patients, suffering from the same medical condition, took part in a clinical trial of a new drug. One of the groups was given the drug whilst the other group was given a placebo, a drug that has no physical effect on their medical condition.

The table shows the number of patients in each group and whether or not their condition improved.

	Placebo	Drug
Condition improved	20	46
Condition did not improve	55	29

Conduct a χ^2 test, at the 5% level of significance, to determine whether the condition of the patients at the conclusion of the trial is associated with the treatment that they were given. (10 marks)

Stats 2 Chi-Squared Contingency Table Tests Answers

	Combine Squash and Badminton S & B Archery Hockey	M1		$E_i < 5$ (Similar categories)
	Male 21/17.5 30/24.5 19/28 Female 24/27.5 33/38.5 53/44	M1 M1		
	χ^2 values S & B Archery Hockey			
	Male 0.7000 1.2347 2.8928 Female 0.4455 0.7857 1.8409	M1		
	$\chi^2_{\rm calc} = 7.90$	A1		(7.8 to 7.9)
	v = 2 $\chi^2_{5\%}(2) = 5.991$	B1 B1ft		(on their v)
	$\chi_{5\%}(2) = 5.991$	BIII		
	Reject H _o Sufficient evidence, at the 1% level of significance, to support an association between the choice of sport and gender	A1ft	10	reject H_o and H_o stated or statement in context
(b)	More females and fewer males chose to participate in hockey than expected	B1 B1	2	
	Total		12	

4(a)(i)

i)	г		-				
	22.24	A	B	Total			
	22-34	21	32	53	B1		for A values
	35-39	72	36	108	B1	2	for B values
	40-59	27	12	39		-	
	Total	120	80	200			
)	H ₀ : no as	sociation	n hetwee	an area			
				il alca	B1		Addapted II
		ige profil			DI		At least H ₀
	H ₁ :assoc			rea			
	and a	ige profi	ile				
				$(O_i - E_i)^2$	M1		Attempt at Row & Column totals
	O _i		E _i	$\frac{(e_i - e_i)}{E_i}$	M1		Attempt at E_i
				Li	M1		Attempt at $\frac{(O_i - E_i)^2}{E_i}$
	24	3	1.8	3.6679	IVII		Attempt at $\frac{E_i}{E_i}$
	72	6	64.8	0.8000			-1
	24		.3.4	0.5538	M1		Attempt at χ^2
	32		21.2	5.5019			The second secon
	36		3.2	1.2000			
	12		5.6	0.8308	A1		AWFW 12.5 to 12.6 provided correct
	$\sum O_i = 2$	$00 \sum E_i$	=200	$\chi^2 = 12.554$			method used
					-		
	v = (3-1)	(2-1) =	2		B1		
	2 (a)						
	$\chi^2_{1\%}(2) =$	9.210<	12.554		B 1√		ft on their v and χ^2
	Reject H ₀)					
	The evide		ante the	t the area within			
				seems to have a			
	effect on t				" E1√	9	ft on χ^2 and calculated value
	employed		nome of	i die stall			depends on H_0 correct, if stated
							depends on m ₀ context, it stated
)				taff employed in	1		
	22 - 34 ag	ge group	than exp	pected in			
	school A			1 15	E1	~	
	and more	than exp	ected in	school B	E1	2 13	

	perf	ormances	at KS3 an	d GCE	B1		
	<i>O</i> _i	E_i	$O_i - E_i$	X^2			
	60	63.55	-3.55	0.1983			
	55	44.64	10.36	2.4043	M1		E_i
	40	46.81	-6.81	0.9907			
					M1		$O_i - E_i$
	55	51.25	3.75	0.2744			$(O_i - E_i)^2 / E_i$
	32	36.00	-4.00	0.4444	M1		$(O_i - E_i)^2 / E_i$
	38	37.75	0.25	0.0017	IVII		
	47	46.33	0.67	0.0097	M1		Σ
	31	32.54	-1.54	0.0733			
	35	34.13	0.87	0.0222			
	43	43.87	-0.87	0.0173			
	26	30.82	-4.82	0.7527			
	38	32.31	5.69	1.0005			
			w ²	C 1007	Al		AWFW 6.05 – 6.35
			$X^{-} =$	6.1897	AI		
	$v = 3 \times 2$	=6 ⇒	$\chi^2_{90\%} = 10.$	645	B1B1√		on their v
	Do not re	ject H ₀					
			gest an as	sociation			
				E grades at			
	10% leve	l of signif	icance.		E1√	9	
	More of t	the studen	ts achievir	ng level 7 at			
	More of the students achieving level 7 at KS3 gain grade A's at GCE than expected.						
					E1	1	
			su del t	Total		1	

H ₀ : condition independent of treatment H ₁ : condition dependent upon treatment	B1		
Totals: 66, 84, 75, 75	B 1		
$O \qquad E \qquad O-E - 0.5 \qquad \frac{\left(O-E - 0.5\right)^2}{E}$	M1A1		for E_i attempted, correctly
20 33 12.5 4.7348	M 1		for use of Yates' correction
55 42 3.7202 46 33 4.7348 29 42 3.7202	M1		final column
$\chi^2 = 16.91$	A1		allow 16.9 If no Yates' correction: possible M1A1M0M1A0 If 0.5 incorrectly used: possible M1A1M1M1A0
$\chi^2_{5\%}(1) = 3.841 < 16.91$	B1√		for χ^2 on their ν
Reject H ₀	A 1√		iff H_0 stated correctly dependent on third M1
Evidence to suggest that the condition of the patients may be dependent upon			
the treatment that they received	E1√	10	
Total		10	